MMI-409 Exam Information

Exam 2 is due: Sunday, May 18, 2014 (11:55pm Central time)

Description: The exam will cover topics from sessions 4, 5, and 6.

Resources: The exam is completely open book. You may use the course textbooks, materials provided on Blackboard, a calculator, and SPSS to answer the questions. For questions that require calculations, <u>all calculations should be shown, not just the final answer</u>. For questions that require an answer using SPSS, the Output Panel screens should be copied to MS Word and attached to the exam.

Restrictions: All answers are to be your work only. You are not to receive assistance from any other person.

To complete the exam:

Answer all questions on the exam thoroughly and put your name on each page of the completed exam. Create an MS Word document, including the question number, the question, your typed answer, and SPSS screens if required. You may use Word's equation editor to complete your answers.

<u>PLEASE NOTE</u>: If you are scanning in handwritten work, you are responsible for the quality of the scan. If answers are illegible, spotty or too light to read, it may lead to your answer not being included in your final score.

1. Once you have completed your exam, return to the exam item where you downloaded the exam PDF, click View/Complete Assignment, and submit your document.

<u>MMI-409 Exam 2</u>

Note:

• Some questions specify that SPSS output be shown as part of the answer. SPSS output can be copied and pasted into a Word document using the COPY and the PASTE SPECIAL commands. In the Paste Special dialog box, select "Picture (Windows Metafile)."

1. The 2006 General Social Survey contains information on the number of hours worked by a respondent each week. For a sample of 83 persons, about 30.1 percent of the sample work less than 40 hours per week. The mean number of hours worked per week is 39.04, with a standard deviation of 11.51.

1a. Calculate a 95 percent confidence interval for the mean data. Show your work. Explain, in plain English, what your results mean. (5 points)

Standard error of mean, $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{11.51}{\sqrt{83}} = 1.26$

95% of confidence interval = $\overline{x} \pm 1.96 \sigma_{\overline{x}} = 39.04 \pm 2.48 = \{36.56, 41.52\}$ We are 95% confident that the respondents worked between 36.56 hours and 41.52 hours.

1b. If we increased the sample size to 10,000 and used a level of confidence of 99 percent, how would this impact the confidence interval for the mean? Calculate the confidence interval (showing your work) and describe your results. (5 points)

By increasing the sample size and

The new Standard error of mean, $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{11.51}{\sqrt{10000}} = 0.12$ 99% of confidence interval = $= \overline{x} \pm 2.576 \sigma_{\overline{x}} = 39.04 \pm 0.30 = \{38.74, 39.34\}$ We are 99% confidence that for the sample size of 10000, the respondents worked between 38.74 and 39.74 hours.

2. Using the normal distribution, we know that 95% of all random sample means will fall within +/-1.96 standard errors of the true population mean. (5 points)

A) 68 **B) 95** C) 99 D) 100 3. **Type II error** is the probability associated with failing to reject the null hypothesis when it is false; whereas, **type I error** is the probability associated with rejecting the null hypothesis when it is true. (5 points)

A) type I error; type II error
B) type II error; type I error
C) p-value; alpha
D) alpha; p-value

4. The 40-hour work week is generally considered as a standard in American society today. Using data from the 2006 General Social Survey, you wish to determine whether the mean number of hours worked per week by men in the sample differs from the 40-hour standard.

Weekly Hours Worked Men	
Range	60
Minimum value	5
Maximum value	65
Mean	42.31
Variance	100.00
Standard deviation	10.00
Sum	1,227
Number of observations	29

4a. State the null hypothesis (H₀) and alternative hypothesis (H₁). (5 points)

Null hypothesis H_0 : $\mu = \mu_0$, the mean number of hours worked per week by men is the same as the 40-hour standard.

Alternate hypothesis H_a : $\mu \neq \mu_0$, the sample mean differs from the 40-hour standard.

4b. Use some or all of the information provided with this question (4) to calculate the value of the single sample t-test. (10 points) Test Statistic: $\mathbf{t_{stat}} = (\bar{x} - \mu_0) / (s/\sqrt{n}) = (42.31 - 40.00) / (10/\sqrt{29}) = 2.31/1.86 = 1.24$ Critical t value, $\mathbf{t_{critical}}$ Degrees of freedom, df = 29 -1 = 28 For $\alpha = 0.05$, $\mathbf{t_{critical}} (df = 28) = 2.048$

4c. Explain, in plain English, what your results mean. (5 points) Since $t_{stat} < t_{critical}$, the test statistics is inside the non-rejection region and inside the critical value. As a result, we failed to reject the null hypothesis that the number of hours worked by men is 40.

	5.	Suppose you are	e interested in	comparing the	e mean number	of hours	worked by	gender.
--	----	-----------------	-----------------	---------------	---------------	----------	-----------	---------

Weekly Hours Worked Women				
Range	59			
Minimum value	11			
Maximum value	70			
Mean	37.28			
Variance	142.88			
Standard deviation	11.95			
Sum	2013			
Number of observations	54			
Weekly Hours Worked Men				
Range	60			
Minimum value	5			
Maximum value	65			
Mean	42.31			
Variance	100.00			
Standard deviation	10.00			
Sum	1,227			
Number of observations	29			

5a. State the null and alternative hypotheses. (5 points)

Null Hypothesis: There is no statistical significant difference in the mean number of hours worked by women or men. H_0 : $\mu_1 = \mu_2$

Alternate Hypothesis: There is a statistical significant difference in the mean number of hours worked by women or men. $H_a: \mu_1 \neq \mu_2$

5b. Use all or some of the information provided to calculate the value of the independent samples t- statistic. (10 points)

Test statistic:
$$t_{stat} = \frac{(\overline{x}_1 - \overline{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{42.31 - 37.28}{\sqrt{\frac{100}{29} + \frac{142.88}{54}}} = \frac{5.03}{\sqrt{3.44 + 2.64}} = \frac{5.03}{2.47} = 2.04$$

Calculating $t_{critical}$:

The degrees of freedom, df = $n_1 + n_2 - 2 = 29 + 54 - 2 = 81$ At 95% confidence level ($\alpha = 0.05$), $t_{critical}$ (81) = 1.99

5c. Explain, in plain English, your results. (5 points) Since $t_{stat}(2.04) > t_{critical}(1.99)$; the null hypothesis is rejected. In other words, there is a difference in the mean number of hours worked by women or men. 6. For ANOVA, why is the F statistic also called an F ratio? (5 points)

В

A) it is the ratio of one group mean to another

B) it is the ratio of the mean square between to the mean square within

C) it is the ratio of the with group sum of squares to the between group sum of squares

D) it is the ratio of degrees of freedom for the within group sum of squares to the degrees of freedom for the between group sum of squares

6. Use the data file ALCOHOL.SAV (attached to the exam assignment) to conduct an ANOVA examining difference in alcohol use by age.

6a. State your null and alternative hypotheses. (5 points)

Null hypothesis: Alcohol consumption does not depend on age. That is,

 $H_0: \mu_{14} = \mu_{15} = \mu_{16}$

Alternative hypothesis: Not all the means of age are equal. In other words, the age effects alcohol consumptions.

6b. Attach your SPSS output. (10 points)

Please see the attachment.

6c. Interpret your SPSS output. (5 points)

The large F ratio (5.61) of ANOVA analysis rejects the null hypothesis. So there must be a relationship between the age and alcohol consumption. We can see that in the plot where the alcohol consumption increases with age.

6d. Run two more ANOVAs – one for males (examining age and alcohol use) and one for females (examining age and alcohol use). What can you conclude? (10 points)

Males consume more alcohol than their female counterparts. Males steadily increase their alcohol consumes as they age whereas females though at first increase their alcohol consumption as they age, their consumption level of between age 15 and 16.

7. Select the best response: Maximum power of a statistical test is achieved when the sample

size for group 1 is greater than the sample size for group 2. (5 points)

A) Greater than

B) Less than

C) Equal to

[DataSet1] C:\Documents and Settings\Apple\Desktop\Alcohol(2).sav

Descriptives

ALCUS	E							
					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
14	82	.6305	.93891	.10369	.4242	.8368	.00	3.32
15	82	.9636	1.04737	.11566	.7335	1.1938	.00	3.61
16	82	1.1718	1.13535	.12538	.9223	1.4212	.00	3.46
Total	246	.9220	1.06311	.06778	.7884	1.0555	.00	3.61

Test of Homogeneity of Variances

ALCUSE

ALCOSE			
Levene Statistic	df1	df2	Sig.
2.925	2	243	.056

ANOVA

ALCUSE

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	12.227	2	6.113	5.613	.004
Within Groups	264.673	243	1.089		
Total	276,900	245			

Robust Tests of Equality of Means

ALCUSE

	Statistic ^a	df1	df2	Sig.
Welch	5.835	2	161.006	.004
Brown-Forsythe	5.613	2	237.455	.004

a. Asymptotically F distributed.

Post Hoc Tests

Multiple Comparisons

Dependent Variable: ALCUSE

Tukey HSD

		Mean Difference (I-			95% Confide	ence Interval
(I) AGE	(J) AGE	J)	Std. Error	Sig.	Lower Bound	Upper Bound
14	15	33316	.16299	.104	7175	.0512
	16	54130	.16299	.003	9257	1569
15	14	.33316	.16299	.104	0512	.7175
	16	20814	.16299	.410	5925	.1762
16	14	.54130	.16299	.003	.1569	.9257
	15	.20814	.16299	.410	1762	.5925

*. The mean difference is significant at the 0.05 level.

Homogeneous Subsets

ALCUSE

Tukey HSD^a

			Subset for alpha = 0.05			
	AGE	Ν	1	2		
	14	82	.6305			
+	15	82	.9636	.9636		
	16	82		1.1718		
	Sig.		.104	.410		

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 82.000.

Means Plots

SORT CASES BY AGE (A). SORT CASES BY ALCUSE (A).

6d.

Univariate Analysis of Variance

Between-Subjects Factors

		Value Label	Ν
AGE	14		82
	15		82
	16		82
GENDER	0	females	120
	1	males	126

Descriptive Statistics

Dependent Variable: ALCUSE

AGE	GENDER	Mean	Std. Deviation	N
14	females	.6748	.99726	40
	males	.5883	.88986	42
	Total	.6305	.93891	82
15	females	1.0086	1.00397	40
	males	.9208	1.09754	42
	Total	.9636	1.04737	82
16	females	.9174	.99146	40
	males	1.4141	1.21995	42
	Total	1.1718	1.13535	82
Total	females	.8669	.99922	120
	males	.9744	1.12205	126
	Total	.9220	1.06311	246

Tests of Between-Subjects Effects

Dependent Variable: ALCUSE							
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	
Corrected Model	17.592 ^a	5	3.518	3.256	.007	.064	
Intercept	208.382	1	208.382	192.867	.000	.446	
AGE	11.931	2	5.966	5.521	.005	.044	
GENDER	.710	1	.710	.657	.418	.003	
AGE * GENDER	4.656	2	2.328	2.155	.118	.018	
Error	259.307	240	1.080				
Total	486.000	246					
Corrected Total	276.900	245					

a. R Squared = .064 (Adjusted R Squared = .044)

Estimated Marginal Means

1. Grand Mean

Dependent Variable: ALCUSE

		95% Confidence Interval			
Mean	Std. Error	Lower Bound	Upper Bound		
.921	.066	.790	1.051		

2. AGE

Estimates

Dependent Variable: ALCUSE

			95% Confidence Interval		
AGE	Mean	Std. Error	Lower Bound	Upper Bound	
14	.632	.115	.405	.858	
15	.965	.115	.739	1.191	
16	1.166	.115	.940	1.392	

Pairwise Comparisons

Dependent Variable: ALCUSE								
		Mean Difference (I-			95% Confiden Differe	ce Interval for ence ^b		
(I) AGE	(J) AGE	J)	Std. Error	Sig. ^b	Lower Bound	Upper Bound		
14	15	333	.162	.041	653	013		
	16	534	.162	.001	854	214		
15	14	.333	.162	.041	.013	.653		
	16	201	.162	.217	521	.119		
16	14	.534	.162	.001	.214	.854		
	15	.201	.162	.217	119	.521		

Based on estimated marginal means

*. The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: ALCUSE

	Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Contrast	11.931	2	5.966	5.521	.005	.044
Error	259.307	240	1.080			

The F tests the effect of AGE. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

3. GENDER

Estimates

Dependent Variable: ALCUSE

			95% Confidence Interval		
GENDER	Mean	Std. Error	Lower Bound	Upper Bound	
females	.867	.095	.680	1.054	
males	.974	.093	.792	1.157	

Pairwise Comparisons

Dependent Variable: ALCUSE

		Mean Difference (I-			95% Confidence Interval for Difference ^a	
(I) GENDER	(J) GENDER	J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound
females	males	107	.133	.418	369	.154
males	females	.107	.133	.418	154	.369

Based on estimated marginal means

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Univariate Tests

Dependent Variable: ALCUSE

	Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Contrast	.710	1	.710	.657	.418	.003
Error	259.307	240	1.080			

The F tests the effect of GENDER. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

4. AGE * GENDER

Dependent Variable: ALCUSE

				95% Confidence Interval		
AGE	GENDER	Mean	Std. Error	Lower Bound	Upper Bound	
14	females	.675	.164	.351	.999	
	males	.588	.160	.272	.904	
15	females	1.009	.164	.685	1.332	
	males	.921	.160	.605	1.237	
16	females	.917	.164	.594	1.241	
	males	1.414	.160	1.098	1.730	

Profile Plots

